SPH Simulations of Galactic Gaseous Disk with Bar: Distribution and Kinematic Structure of Molecular Clouds toward the Galactic Center

نویسندگان

  • C. W. Lee
  • H. M. Lee
  • K. H. Kwon
چکیده

We have performed Smoothed Particle Hydrodynamic (SPH) simulations to study the response of molecular clouds in the Galactic disk to a rotating bar and their subsequent evolution in the Galactic Center (GC) region. The Galactic potential in our models is contributed by three axisymmetric components (massive halo, exponential disk, compact bulge) and a non-axisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. Some noticeable features such as an elliptical outer ring, spiral arms, a gas-depletion region, and a central concentration have been developed due to the influence of the bar. The rotating bar induces non-circular motions of the SPH particles, but hydrodynamic collisions tend to suppress the random components of the velocity. The velocity field of the SPH particles is consistent with the kinematics of molecular clouds observed in HCN (1− 0) transition; these clouds are thought to be very dense clouds. However, the l−v diagram of the clouds traced by CO is quite different from that of our SPH simulation, being more similar to that obtained from simulations using collisionless particles. The l − v diagram of a mixture of collisional and collisionless particles gives better reproduction of the kinematic structures of the GC clouds observed in the CO line. The fact that the kinematics of HCN clouds can be reproduced by the SPH particles suggests that the dense clouds in the GC are formed via cloud collisions induced by rotating bar. Subject headings: The Galaxy: center clouds: structures : SPH: gas dynamics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hitting the Bull’s-eye: the Radial Profile of Accretion and Star Formation in the Milky Way

Ongoing star formation in the Milky Way requires continuous gaseous fuel from accretion. Previous work has suggested that the accretion of dwarf galaxies could provide the needed gas for this process. In this work we investigate whether dwarf galaxy accretion is consistent with the radial profile of star formation observed in the Milky Way, which is strongly concentrated toward the center of th...

متن کامل

The effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations

Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...

متن کامل

The formation of molecular clouds in spiral galaxies

We present Smoothed Particle Hydrodynamics (SPH) simulations of molecular cloud formation in spiral galaxies. These simulations model the response of a non-selfgravitating gaseous disk to a galactic potential. The spiral shock induces high densities in the gas, and considerable structure in the spiral arms, which we identify as molecular clouds. We regard the formation of these structures as du...

متن کامل

Absorption Line Survey of H3 toward the Galactic Center Sources Ii. Eight Infrared Sources within 30 Pc of the Galactic Center

Infrared absorption lines of H3 , including the metastable R(3,3) l line, have been observed toward eight bright infrared sources associated with hot and massive stars located in and between the Galactic Center Cluster and the Quintuplet Cluster 30 pc to the east. The absorption lines with high velocity dispersion arise in the Galaxy’s Central Molecular Zone (CMZ) as well as in foreground spira...

متن کامل

Cosmological SPH simulations: A hybrid multi-phase model for star formation

We present a model for star formation and supernova feedback that describes the multi-phase structure of star forming gas on scales that are typically not resolved in cosmological simulations. Our approach includes radiative heating and cooling, the growth of cold clouds embedded in an ambient hot medium, star formation in these clouds, feedback from supernovae in the form of thermal heating an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998